www.psychspace.com心理学空间网
神奇的数字7±2:人类信息加工能力的某些局限
我曾名为一个整数所困扰,七年来,这个数即出现在我个人的实验数据中,又见之于最出名的心理学刊物,令我困惑不已,难以释怀。这个整数有种伪装形式,有时稍大些,有时又略小些,但从未变得不可识别;由此观见,它这种令我困惑的稳定性,远不是一种随机现象。用一名知名参议院的话来说,它背后有一种谋划,有种支配表面现象的模式。看来,这个数或者确实反映了某些异乎寻常的东西,否则就是我徒受幻造之谜。
判断实验,但历史的变故却要求这些实验重新命名,我们现在称之为人传递信息能力的实验。由于这些实验室在信息论出现于心理学中以后进行的,而且是用信息论的概念来分析其结果,因此在讨论前,我应对这个理论稍作说明。
我要向你们谈谈某些实验。并以此说明我久已思考的问题。这些实验证明了人能多么准确地确定一个刺激的不同方面的数量,在心理学传统的语言中,通常称这些实验为绝对一、信息测量
信息量与我们多年来所说的"变异量完全是相同的概念。所用的方程尽管不同,但我们若恪守凡能使变异量扩大的因素,也会使信息量增大这一思想,则不会远离正。
这种讨论变异量的新方法,其优越性相当明显。变异量总是用测量单位来表示,如英寸、磅、伏特等,而信息量却是一种无量细的量。由于信息在一种不连续的统计分布中与测量单位无关,因此在没有任何度量单位可资采用,我们通常也不会想到应用变异量这一概念的情况下,却可以使用信息量的概念。信息量概念使我们能对在完全不同的实验情境中获得的结果作出比较,否则要比不同度量得出的变异,显然是无意义的。由此可见,采用这一新概念甚为必要。
对变异量与信息量的类似性,可作如下解释:当变异量很大时,我们就极难料到将发生些什么事。如果我们十分无知,通过观察我们就将获得许多信息;反之,如变异量很小,我们事先就会知道会观察到什么,所以由观察所获得的信息也就很少。
请设想一个通信系统,则可明白,这个系统输入、输出的变异性都是很大的。所以两者都可以用变异(或信息)来表示。可是如果这是良好的通信系统,则输入与输出之间必存在着有规则的联系。换言之,输出将取决于输入,或者说输出与输入相关。若测定其相关程度,我们即能说出输出的变异在多大程度上是由于输入,又在多大程度上是由于传递过程中由系统导入的随机波动或“噪音”所引起的。可见,测量所传递的信息,亦即测量输入、输出间的相关关系。
这里应遵循两条简单的规则:凡我谈到信息量时,你们应理解可变异量,而说到所传递的信息量时,则应理解为协变量或相关关系。
这种情况可图解为两只部分相系的圆。左边的圆可看作是输入的变异,右边的圆则为输出的变异,相系部分则是输入、输出的协变量。下面我要谈到分别表示输入、输出信息量的左、右边的圆,以及作为传递信息量的相系部分。
通道容量,它表示被试作某种绝对判断时,接受刺激后能反应出的最大信息。通道容量是被试绝对判断广度的上限。在这一限度内,被试可将他的反应与我们给予的刺激作出比较。
在绝对判断实验中,可视被试为一信息通道。那末,左边的圆就表示刺激的信息量,右边的圆则是被试反应的信息量,而相系部分就是用传递信息量来表示的刺激——反应的相关程度。实验的内容是增大输入信息量并测定传递的信息量。若被试的绝对判断十分准确,则说明输入的信息几乎都传递了过去并在反映中再现出来。若被试的反应中出现了差错,就说明传递的信息要比输入的小得多。我们预期输入信息量不断增加,被试就会出现越来越多的差错,这样就能测起被试作准确绝对判断的限度。若被试系一正常的通信系统,则增大输入信息量时,传递的信息一开始亦将增加,而最后将逼近一渐近值。我们视这一渐近值为被试的